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Phase Transition for Absorbed Brownian Motion
with Drift
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We study one-dimensional Brownian motion with constant drift toward the
origin and initial distribution concentrated in the strictly positive real line. We
say that at the first time the process hits the origin, it is absorbed. We study the
asymptotic behavior. as 1 - =, of m,, the conditional distribution at time zero
of the process conditioned on survival up to time ¢ and on the process having
a fixed value at time 1. We find that there is a phase transition in the decay rate
of the initial condition. For fast decay rate (subcritical case) m, is localized, in
the critical case m, is located around \/7 and for slow rates (supercritical case)
m, is located around ¢ The critical rate is given by the decay of the minimal
quasistationary distribution of this process. We also study in each case the
asymptotic distribution of the process, scaled by \/7 conditioned as before. We
prove that in the subcritical case this distribution is a Brownian excursion. In the
critical case it is & Brownian bridge attaining 0 for the [irst time at time 1. with
some initial distribution. In the supercritical case. after centering around the
expected value—which is of the order of r—we show that this process converges to
a Brownian bridge arriving at 0 at time 1 and with a Gaussian initial distribution.

KEY WORDS: Absorbed Brownian motion; quasistationary distributions;
conditioned Brownian motion with drift.

1. INTRODUCTION

Let (B,),., be a standard Brownian motion defined on (L2, #, (%), P).
Take a >0 an_d consider

X,=B,—uat
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214 Ferrari et al.

a Brownian motion with constant drift —a. By P, we mean the distribu-
tion law of the process with initial condition X, =x.

Let v be a measure concentrated on (0, cv). We denote by P, the
distribution of the process when the initial point X, is chosen with the
measure v. Let T, be the hitting time of the origin, that is, T=
inf{#: X,=0}. Informally we say that at this time the process is absorbed
in 0.

One of the problems studied in absorbing Markov processes is the
behavior of the process conditioned on nonabsorption. That is, one studies
the law

Ple|Ty>1}

To our knowledge there are no attempts in the literature to study the
conditioned process in the whole interval [0, t]. We want to take advan-
tage of the fact that one can compute almost everything in the Brownian
motion setting to show the kind of results that one can expect in more
general cases.

We consider initial distributions v on (0, «) satisfying three conditions
(the classification will be clear in a moment):

» Subcritical case: | xe** v(dx) < co.
o Critical case: dv/dx=kx"e ™™ for some m=0.

LAY

e Supercritical case: dv/dx=h(x)e ", where 0e(0, «) and A is, for

instance, a polynomial in x.

In Theorems 1 and 2 we study the law of the process (X)), (,.,; condi-
tioned on Ty >t In the subcritical and critical cases we rescale space
dividing by \/7 . In the subcritical case we show that the law of the process
(X, /\/7 )ser0.17 conditioned on Ty >t converges to the law of a Brownian
excursion. That is, it converges to a Brownian motion conditioned to stay
positive in (0, 1) and to be at the origin at times 0 and 1. In the critical case
we show that the law of the above rescaled and conditioned process
converges to the law of a Brownian bridge with initial distribution (propor-
tional to) x”*'e = conditioned to stay positive in [0, 1) and to be at the
origin at time 1.

In the supercritical case we change the normalization and show that
(X,/t)ser0.7 conditioned on Ty >t converges in distribution to the deter-
ministic motion that follows the line y(s)=(x—8)(1—5). To see the
fluctuations around this line we study the process

(X.\'I _.V(S)>
\/? se[0.1]
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and show that it converges to Brownian motion conditioned to be at 0 at
time 1 with a Gaussian initial distribution.

We conjecture that the same kind of results can be shown for the
asymmetric random walk on N. This process makes jumps of length one
with probability p to the right and ¢ to the left, with ¢ > p. The minimal
qsd and the Yaglom limit were obtained by Seneta.®

In contrast, for a family of probabilistic cellular automata that con-
tains subcritical oriented percolation, Ferrari et al.'*’ obtained that the pro-
cess starting at a fixed configuration conditioned to nonabsorption until ¢
stays essentially in a finite set of states for all times s < ¢. Hence, if we call
X, the number of infected points at time ¢, then (X, S.,/\/? )sero.17 condi-
tioned on T >t converges to the deterministic trajectory y(s)=0. The
same must be true for the subcritical branching process. It would be
interesting to understand how these models behave in the critical and
supercritical cases.

In Section2 we give some preliminary definitions and facts about
Brownian motion and Brownian bridges. In Section 3 we state our main
results for the conditioned process and in Section 4 we give the proofs.

2. BROWNIAN BRIDGES AND EXCURSIONS

We recall in this section some basic facts about Brownian bridges and
excursions that will be used in the statements of our results.
The transition density of the process X,= B, —at is given by

—x{y—x)— *21/2

p'Nx,y, t)=e p(x, y, )
where
1

2t

—(x— 2

pix,py,t)= e

ﬁ

is the transition density of a Brownian motion.
We denote by
T)=inf{r>0: X,=a}

the hitting time of state a. The process will start with initial condition x>0
and we say that the process is absorbed at time Ty and that the process
survived till time ¢ if T} > 1.

The semigroup of the process killed at 0 is P'f(x) =EJ(f(X,), T >1¢)
and we denote by p'*)(x, y, t) its associated density. We have

PP, y, ty=p*x, y, ) — p*x, —y,1)  for x,y>0

822/86/1-2-15



216 Ferrari et al.

and we denote p _(x,y,t) = p'Ax, y, 1), s0

p_(x, ¥, 0)=p(x, y, 1) = p(x, =y, 1)
2

J2rt

which is the transition density of a Brownian motion which does not
attain 0.

When one fixes the endpoints of a path at times 0 and ¢ at x and y,
respectively, the conditional distribution

2 2vm, . X,
e~ ginh (Ty> for x,y>0

P{Xed| X, =y} for Ae#

does not depend on the drift «. In fact the joint density for passing from
z, to z, at times 0 <5, <s, <1 1s given by

p(x, z,8)) P21, 23, 53—~ 81) P23, p, 1~ 53)
plx, . 1)

g™z, 22550, 50) =
When we also impose that the process does not attain 0 we have a similar
result, ie., the distribution
PAXed|Ty>t X, =y} for AeZ
does not depend on the drift « and its joint density is given by

p_(x,zy,8)p_(2\,25,85,—8) p_(Z5, ¥, 1 —S5,)
p_(x, 3, 1)

gz, 2y sy, 8) =

Hence when we evaluate this kind of conditional distribution we can
assume that X is a Brownian motion.

The functions ¢'>*" and ¢’ are joint transition densities of
Brownian bridges passing from x to y in [0, ], the last one being such that
the process dos not attain 0. Processes with such densities are denoted
respectively B¥"*' and BY"'; the last one is called a positive Brownian
bridge between x and y in [0, t]. The associated distributions are denoted
respectively by BB™ "' and BB *'. When r=1 we omit the dependence in
t, so we write BBY:" and so on. We shall prove that it is possible to take
limits, in distribution, in x and y for positive Brownian bridges BB*".

Lemma 1. Let B be a Brownian motion. Let x,,y, be strictly
positive numbers for £>0 and x,— x, y,— y as ¢ 0. Then the P_condi-
tional distribution of B given {TJ > 1, B, =y,} converges in distribution as
el0.



Absorbed Brownian Motion with Drift 217

This distribution is also called a positive Brownian bridge between x
and y in [0, 1], we denote it BB ”, and a process with this distribution is
denoted BY". Notice that BB";’ is a Brownian excursion in [0, 1]. In ref. 2
the above result was shown for the special case x,= y,=¢.

As usual, convergence in distribution means weak convergence on the
space of continuous functions over a suitable time interval.

3. THE CONDITIONED PROCESS AND MAIN RESULTS

For a probability measure v concentrated on (0, c0) we denote
by P, the distribution law of the process with initial distribution
P.{X,e C} =v(C), ie,

P{XecA) =j P{Xedl d(x) for AeF

The probability measure u# defined in (0, c0) by du(y)=a’ye " dy is
the limit conditional measure of (X,) in the sense that it satisfies for any
initial condition x>0

wC)=lim P{X,eC|T;>1} for every Borel subset C<= (0, o0)
1 — o
This measure is conditionally invariant,that is, it satisfies the following
property:

wC)=P,{X,eC|Ty>1t} ¥Y¢>0 and for any Borelset Cc(0, o)

The family of absolutely continuous probability measures which are
conditionally invariant is a one-parameter family of left eigenvectors of the
semigroup P’ associated to the diffusion (X,); then they satisfy

PP = ey for r>0 and ye[—a«?2,0)

The probability measure associated to the minimal value y,= —a?/2 turns
out to be the limit conditional measure, so ¢ =u""’. The other ones are
given by

u(x)=e"*sinh(,/a*+2yx), for ye(yy,0)

For y =0, the measure ‘"’ defined as above is also a left eigenvector and
it has infinite mass. Notice that when starting from the conditionally
invariant distributions, the absorption times are exponentially distributed

Pu{Ty>1}=e”

e
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and consequently ordered with respect to the standard stochastic order.
The extreme distribution u=u'%’ is the one that has minimal absorption
time. For this reason u=pu"%’ is called the minimal quasistationary dis-
tribution.

Observe that associated to each y >y, there is a positive right eigen-
vector of the semigroup given by

@"(x) = e™ sinh(\/a> + 2y x) for y>v, and @"(x)=xe™

For these results see ref. 6, where many of them were shown. For a general
discussion concerning limiting conditional measures and conditional
invariant measures see refs. 1, 3, 6, and 9. The limit conditional distribu-
tions were firstly study by Yaglom"'® for the subcritical branching
processes.

Assume that we start from some initial probability distribution v on
(0, o0). Then look for the conditional distribution of X° given that X
survived up to ¢ and X, belongs to some bounded subset of (0, cv). We
show that there is a phase transition concerning the region where the so
conditioned distribution of X, is concentrated. This transition depends on
the tail of v and it takes place when the tail is of the order ¢ =", where «
is the decay parameter of the minimal quasistationary distribution. In fact
the transition depends on some integrability condition on v with respect to
the asymptotic ratio

P {T¥>1)
lim =% — 1
ILII‘lL P,{T6¥> I}

This asymptotic quantity turns to be the positive right eigenfunction
associated to the minimal value y,. This explains why the critical rate is
given by a. In the proof of our result we need some domination condition
of the ratio and this is given by the following elementary result, which
follows from classical estimations.'®

Lemma 2. We have

X
IPA\'{ TO > t} <£ ea(.\‘—_r)e_rz/?_l

PATY>1} "y
X ey
sK(a);e“““-" for t=ze forsome &>0

PATy>1} x

l' =_e1(.\'4_|')

R PATES 1)y



Absorbed Brownian Motion with Drift 219

In our theorems we are going to assume y >0 is fixed. On the other
hand, v will be a probability measure on (0, o). Our results deal with
distributions v satisfying one of the following three disjoint conditions,
which we call (C1)—(C3).

(Cl) [ xe™ v(dx)< 0.
For (C2) and (C3) we assume dv < dx:

(C2) dv/dx=kx"e™™ for some m = 0.
(C3) dv/dx=h(x)e ", where 8e(0, a) and the function / satisfies
VYx>0:
(i) h((x—0)t+x \/?)/lz((oc —6)t)—,_ ., h for some con-
stant 1€(0, o).

(i1) h({e—8)t+x \/7)/11((oc —0)t)<g(x) for some func-
tion g satisfying

L

f g(x)e ¥ dy < 0 for some ¢>0
0

We observe that the class of functions # which satisfy condition
(C3)(i), (ii) includes all the polynomials, and also all the finite combina-
tions of the form 3, {(x+a,)"", where a,>0 if m;<0. It cannot contain
exponentials, but it contains functions between polynomials and exponen-
tials, for instance, #(x) = x'2" for large x.

Theorem 1. For v satisfying one of the above conditions we have:

(Cl) lim P{X,<x|X,=y, T¥>1}

t— o

o -1 X
= <J ue™ v(du)) f ue™ v(du) for x>0
0

0
If also dv < dx, then

xe™" dv/dx

. d ’
lim —P{X,<x|X,=p, TS>1} =W

1 — oo dX

(C2) lim dii PAX,<x/1| X, =y, TE>1)

= v

m4 1, —3322

=c(m)x"*'e for x>0

where c(m) = ([ u"*' e du) =",
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(C3) lim %P.{Xué(a—ﬁ)t-i—x\/?lX,:y, T()‘>t})

= s

~x /2

for xeR

The case (C2) is called critical and cases (Cl) and (C3) are called
respectively subecritical and supercritical.

Now we study the conditional distribution P {XeA|X,=y} for
A€ Z,, properly localized and in the scale \/7 . For treating the three cases
(C1)~(C3) with a general approach we are going to put § =« in case {Cl)
or (C2) and # <« in case (C3). We shall consider the process

Z.,='1—(Xm—(a——0) Hl—u)) for uz=0
t

7

which is a Brownian motion with drift. We will study the limit distribution
of this process for u e [0, 1] conditioned on the event {X, =y, T >1}. We
have {X, =y} = {Z, =y/\/7}. By defining

S*'=influ>0:Z, < _(a—H)\/?(l —u)}

we get { Ty >1} <> {S*'>1}. On the other hand, X,=(Z, \/?+(<x—0)1),
so that X, ~ v is equivalent to Z, ~v', where

V(z,z+dz)= v((:\/7+(<x—0)t), ((z+dz) \/7+ (x—0)1))

Then, studying the P, limit distribution of (X, —(x—8) t{(1 — ®))/
\/? with @ € [0, 1] conditioned on the event {X,=y, Ty >t} is equivalent
to studying

lim P,{Zq€d|S%'>1,Z =y//1} (1)

for A in the o-field generated by the coordinates belonging to [0, 11].

In the next result we use an extended notion of Brownian bridges.
Even if the initial point is not fixed, we continue to call it a Brownian
bridge; thus the distribution of P,{Be 4 | B, =y} is denoted BB, and if
T is concentrated on (0, c0), the distribution P {Be 4 | TZ> 1, B, =y} is
denoted BB";".

Theorem 2. The limit conditional distribution given in (1) is the
following one in the three different cases:

(Cl) A Brownian excursion on [0, 1].
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(C2) A Brownian bridge conditioned to be positive in [0, 1), BBY’,
where 7 has density c(m)x"*'e™ 21, .

(C3) A Brownian bridge BB™°, where v has Gaussian density
e*‘\'z/z/\/z—ﬂ.

We remark that result (C3) is equivalent to saying that when we
reverse the time on the limit distribution, ie., we make v’ =1—u for
ue[0,1], it is a Brownian motion starting from 0. On the other hand,
(C3) implies that in the supercritical case (X, /t),c(0.17 conditioned on
{Ty >t} converges in distribution to the line y(s)=(a—0)1—ys).

4. PROOF OF RESULTS

Proof of Lemma 1. We prove this result only in the case x=y=0.
We follow the method developed in ref. 2. The proof is divided into two
parts. First we prove that the finite-dimensional distributions converge.
Second we prove that the set of measures P {® | Ty >1, Z, =y,} is tight.

The convergence of the finite-dimensional distribution follows from the
Markov property and the limit of the joint density is given by

q-(21,22,8,8:) = l’irnoq"_‘"*-""“(z,, 22,81 852)
Aend
¥ =0

k) 3
— (2728 + 257200 —52))

=2Z|52€ TP (21,2382 —5))
V2 (s,(1—52))*"

which corresponds to the transition density of a Brownian excursion. This
last limit is easily computed by using the I"'Hépital rule.
We note that the marginal conditional density is given by

g_(z8) = lim p_(x',z,5)p (z, ¥, 1—s) 2% TR-n

o p_(x, ¥y, 1) J2n(s(1 —s))*?

For tightness we shall prove that for every 1/2>J>0 the induced
measures on 4[J,1 —5] by P, {®@ | T{>1, Z,=y,} is a tight family, and
that for every # >0

limlim P, { sup |Z,|<n|Ti>1,Z,=y,}=1 (2)
dl0 0 i N<u<o
limlimP,{ sup |Z|<n|T{>1Z,=p}=1 (3)

310 |0 l—s<u<l
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The corresponding tightness on %[0, 1] follows from Theorem (3.1) in
ref. 2.

Let us fix 1/2>6>0. For every ¢>0, consider a compact set K of
%[5, 1—0] such that BB®%(n~'K)>1—¢, where n: ¥[0,1] - %[, 1 -]
is the natural projection and BB’ is the distribution of a Brownian
excursion in [0, 1]. The Markov property shows that

PA{Zen 'K|T{>1,Z,=y,}

_J J p Ylsu 6 p (U JF’ )BB,-,;-,~_|72,)‘(K) dlldv
(x5 e 1)

We remind the reader that BB“"'~?% is the distribution of a positive
Brownian bridge on [0, | —2J] with u as initial position and v as final
position.

By I'Hopital rule and Scheffe’s lemma

7 we deduce

lifn P.{Zen'K|T§{>1,Z,=y,} =BB%(n~'K)
el )

from which the tightness in ¢[J, 1 — 3] follows.
We shall now prove (2). First notice that

Je,0)=P { sup |Z|<n|T¢>12Z,=y,}

[ESCE
p_(z, y.,1-9)
=| P { sup |Z)<n TI>0, Zseds}—222
f ‘ 0 \Er) I | ’7 0 ’ } P (xw yl:’ 1)
y Az, y., 1 =6) p_(x,, z,5)
=P O|T7>0,Z,=z) B2 059 4
-[() A\{ > l 0 > } P_(X,;a ym 1)

Using Proposition 2.8.10 from ref. 5, we obtain

i . Ax,, z+2nn, 6)
P {TZ 55| %56, Z,=z = ¥ 2=
-\ﬂ{ 7 I a0 } ,E:Z p—(xti’ Z 5)

where p_(x,y,t)=—p _(x, |yl,t) when x>0 and y <0.
Therefore

J(s,5)=[

Q

{1+Zp X, 2+ 2nn, &)

(X 2l 1)
n#*0 pP_ (X,,_,é) }q— ( 5)d~
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We have the following estimates:
q(._\',;._n_». i )(Z, 5)
_2expl —(x3/2)(1 = 8)/0 — (y7/2) 6/(1—9)]

V2 [5(1-8)]'"

(sinh(_\',:z/é) sinh(y,z/(1—46)) exp[ —z%/26(1 — 5)]>
X sinh(x, y,.)

_cosh(¢) cosh(¢') 22 exp[ —z%/26(1 —6)]
cosh(¢") J27[8(1—6)]?

where
A=ex <\,21—5+y,2_5 )
=EXP 276 21-¢
’Yl.': ' yl:" "
<—, </, < .
< RISTS Elsxy
Therefore
q(_\._w,.l) o q_("é)
Moreover
(]('_‘.""r‘” 1 )(Z, 5) < 53/2 euq,*o‘zze—:2 2801 — ) (4)

for some constants D and & depending only on #, for small ¢.
On the other hand,

p_(x,, =+ 2nn, J)
p_(x,,z0)

7=/ — /0 (Sinhl ('\I:/é )(", 2"”;) |>
=e 2= /0 — 2zmnplc
SiIl]l(,\ ’:.../)

=e~ 2/:2112 15— 2znun/o < COSh( é) . z + 2”’7)
cosh(¢&') z

for some [&]| < x|z +2n|/d, |&'| < x,z.
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Hence,

hmp ( X, 2+ 27’17’[, 5) —e — 2200 — 2218 (7 +2m7> (5)
£10 p_(\,:, Zs (5)

i

Also, we have for 0 <z<y

e~ 2207715 + pip )/ (6)

p_(x,, z+2nn, 6)‘ Clnl
p(xnz2,0) |

where C and y depend only on #, for small ¢.
From (5) and (6) we deduce that

0<UmP fT7>6|TF>06,Z, =z} =1+ % e*z"zv“**z:""ﬁ*(

“io n#0

z+ 2m7>

zZ

Using {4)—(6) and the dominated converge theorem, we get

_ " N - e =D
lim J(z, ) = (1 + Y e 2o ( )) d:
£L0 L) Z z /27'[[5(1—5)]3’/2

=

n#0
n/2 5/2 3y 5,
= ' q_(z,é)dz—fl Z e " Hrwid nbrio
0 0 n£d
,_e _"_.()(l—l))
x(1+2n))ny dz
2 [6(1 —
Since
n2
J q-(z,0)dz ——p 1
()
and the last term is bounded by
3n 5220 )
5 Z |}’l| e‘“""""*'”'" /o — 0
[6(1-8)1'" 2, 40

the relation (2) follows. The proof of (3) is completely analogous. |
Proof of Theorem 1.

A(t, x)

(Cl) PAX,<x|X,=y, Ty >1} T A(t, )
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where

PATq >t}

P{TE>1) dv(u)

A(t, x) = f PiX,edy| TE>1) -
0
By using Lemma 2 and the fact that y is the limit conditional measure,
1e.,

P X edy| T > 1) ——> uldy)
we can pass to the limit t - c0 in A(¢, x) to obtain

lim A(t, x)=pu(dy) f‘- ue™ v(du)
0

=

Since this also holds for x = oo, the result is shown.
Let us show the second statement in (Cl). We denote f=dv/dx
[ this notation will be also used in {C2) and (C3)]. We have

d
d\_P,.{X,,SX | X, =y, Ty >1}

S pP(x p0)
S pAX, y, 1) dx

F(x) e*e =20~ sinh(xy/t)
jf(‘c e e~ V20" sinh(x'y/t) dx’

When r— co, both terms, numerator and denominator, converge to 0.
Take u=1/t; in order to be able to apply the 'Hépital rule, observe that

i(
du ¢

—(1/2)x"?

sinh(x'yu)) < Kx', ¥x' >0

with K= K(¢) and uniform in u e (0, ¢}, for some small ¢ > 0. Hence, from
our hypothese we can apply the 'Hopital rule and obtain

. d . '
lim ZP.»{X()gA‘ | X, =y, T(‘)" >I}

{— A
— lim () eT (= 1% sinh(xyu) + xy cosh(xyu)) e ="'
w=0{ f(x') e (— 1x'? sinh(x'yu) + x'y cosh(x 'yu)) e e R gy

__Jix)e
_If('\,l) ' x' dx'
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Now, let us show (C2) and (C3).

%P,.{Xogx\/ﬂ TY¥>1,X,=y)
S /1) p (St xy, 1) dy
§Pe /AT >0 X, edy} f(x J)dx'

Easy computations show that this quantity is equal to

Xp (% y/T 1) x"e sinh(xy//1)
[xp (¥, p//1, 1) dx" [ x™e " sinh(x'y/\/1) dx’

We can apply the 'Hopital rule to get that

(C2)

3,
1, 2

X €

s‘OL X””+ | e—,\"z’Z dxl

. d ~
lim d_vp..{X()<-Y\/?| T(l‘>r’ Xl:y} =

=

Now we consider {C3).
d )
(C3) =P {Xo<(a=0)1+x/1|T>1,X,=y)

_ fUa=0) 4/t x) pP((a= Ot 4/t x, p, 1)
[ fa—=0)t+ /1t x) p™((a—8) t+ ./t X', p, 1) dX’

_ (e —0) t+ t.\‘)e""””“'\ﬂp_((oc—ﬁ)I+.\‘ oy t)
jh((a~0)t+\/;)e“"'”"""/?pg((a—ﬂ)r+.\" t,y, t)dy'

By developing the p_ term we find that this expression is equal to
h((a— 0) t+x\/7) e~ 2 sinh{[(a—(?)—!—x/\/?] v}
fh(a=—8) t+x" /1ye 2 sinh{[(x—0) + x'/\/1] '} dx'

Dividing the numerator and denominator by A((ot— ) t), making t — o0,
and using our hypotheses on the function %, we find

—\2

e

d
—P X < — 8 X t X R = =
dv AXo<(a—0)t+x \/_| Ty>t, X, =y} [e 7av

Remark. From Scheffé’s lemma, under condition (C2), we have
PiX,<x \ﬂ | Tg'>t, X, =y} converges in distribution and its limit has
a density given by Theorem 1. A similar comment holds under (C3).



Absorbed Brownian Motion with Drift 227

Proof of Theorem 2. (C1) In this case Z,=X,, /\/;, and we obtain

X .
P, {JGA | X, =y, T3 >t}

i

=U Py ilZed|Z,=yl/1,TE> 1}

U P{TY> 1)

PAX,edy | Ty > 1} ———%—=v(dx
.\{ le JI ()> }P|{T0‘>t} V( \)]

PATy>1}

PAX,edy | TYy>1t}) ——2——
X,:J A\{ le .]I 0 > } PI{T(’,‘>I}

—1
v(dx )}

Since

lim P, ;{Zed|Z =y//t,T{>1} =BB (4)

1=

lim P{X,edy| Tyf>1t} =a’ye " dy
= 7
P Ty > 1)

P TS > 1) < Kxe™ for all ¢ big enough, which is v-integrable

and

 PATY> 1
1 X ()’ =x
NPT S

LAy

the result follows from the dominated convergence theorem.

Let us show the result for the critical and supercritical cases {C2) and
(C3).

Let F: 4[0, 1] — R be a bounded continuous function. We must study
the limit of the quantity

EF(Z)| Ty >t X,=y)
Denote
G(2)=E(F(Z) | T¥>1, Z,=y//1)

__J©) PATY>1,Z, edy//1}
If(:,) P:’{T(,)\'->t’ Zledy/\/?} dzl

h(z)

where f'=dv/dx.
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From Theorem 1 we have that h{z)—,_ ., h(z) pointwise, where

h) {.\"” Hle(m) 2t e TR for z> 0 in the critical case
z)=

4

e " (fe =22 gy ! in the supercritical case

Observe that |G (z)] < ||F] . , so if we are able to show that G[(z)
converge pointwise to a G(z), then

fh,(:) G,(z) dZTw—l,’ Jh(z) G(z)d=

will follow from an application of Scheffé’s lemma. The identification of the
limit will be made by inspection on G.

For studying G, ) we observe that Z can be assumed to be a
Brownian motion (starting from z) because it is a conditional distribution
with both extremities fixed.

In the critical case we have Z,\.=X,\.,/\/'r and so Ty >t<TF>1.
From Lemma | we have

Vz>0 EAF(Z)| T¢>1,Z,=y//t) ——— E(F(B7")

where B%" is a Brownian bridge from z to 0 which does not attain 0 before
time 1.

Let us study the supercritical case and instead of G,(Z) we will study
E(ZeA| T(',‘">I,Z|=y/\/;) for A=% with r<l1
Now
E(Zed, S%'>1,Z edy//1)
=E(Zed, §' > E (8% >1—r, Z,_,edy/\/1))
where §%/=inf{s>0: Z,> —{a — ) \/;(1 —(r+s)}.
Hence the above expression is
j EX(ZeAd, S% >r|Z, =1)

—(A—z)2r

xE(§% ' >1—r, Zlf,.edy/\/?) e W

 2nr
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Let us study the first term in the integral. For this purpose we shall
show that

E(S*'>r|Z,=1) — 1
Make the change of variables U,=Z,+(x—¥) \ﬂ(l —s). We have
U(,=:-+(<x—0)\/?, U,.=/1+(<x—0)\/7(1 —r), and S%'>r is equivalent
to T >r. Then
E(S*'>r|Z,=1)
=ET¢>r| Uy=z4(a—0)/t, U=2+(a—0) /1 (1—r))

Since it is a conditional distribution with fixed extrema, we can assume
U is a Brownian motion, and we find that the last expression is

p_(z4(a—0) /1, A+ (@=0)/1(1—r),r)
e+ (a—0) /1, A+ (a—0)/1(1=r),r)

=1——exp[— %(:-}-(a—ﬁ)\/?)(i—{-(oc—(f)\/;(l—r‘))]ﬁ1

= T

Hence

E:(ZEA, S > I Z,=i)TI—> F{(ZeA | Z,=/1)

On the other hand, make the change of variable ¥, =Z, + (a — 8)(1 —
(r+u))\/; to obtain

EAS%'>1—r,Z,_,edy//1)
= IE/".+(1—U)(I—1‘)\/7(TOY> l1—rY, 7r€dJ’/\/7)
= p = A+(a— 001 —1) /1, y/\/t. 1~ r) dy
which yields

E(8%'>1 —r,Z,_,.edy/\/?)
1

T anl—n)

: Ay >
h{——+(a—8 d
X sin <\/7(1~r) (a—08)y |dy

e Ma—0, — /2001 — e —A2(1—-1)
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By taking 4=z, r=0 we also get

E(S%'>1, Z, edy/\/1)

1 ) s zZy
= e Y0~ o= 2 6inh <— +(a—0) y> dy
V2 \/?

Then,

[E;_(S_Z" >1—r,Z, _,.E(ly/\/?) B e—;@xZ(l -+ =2
E(S%'>1,Z edy/\ /1) '~ 1—r

and we also get a domination in A, uniform for large 7, which allows to
integrate in our formula.
Then

E(ZeA|TY>1Z,=y//1)
=E(ZeA|S$%'>1,Z,=y//1)

=j E(ZeAd, S*'>r|Z,=1)

y E(S“'>1—r Z, A,,edy/\/—r) PECEE
E(S*'>1,Z edy//1) r

—(a—2r =220 — )+ 232

e

N/ 2nr J1=r
plz, 4, r) p(4,0,1—r)
plz,0,1)

di

dA

TJE:(ZEA | Zr:l)e

=jl£_.(ZeA|z,.=,1) da

Therefore,

VAe | Z: lim P{Zed|Ty>t,Z,=y}=P{Wed| W, =0}
s<| ==

where W is a Brownian motion with a standard Gaussian initial distribu-
tion.

To finish the proof it suffices to show tightness. Following Theorem 3.1
of ref. 2, it suffices to study the process around the extremity Z, = y/\/; .
We are led to prove for any = >0

lim lim P.{ sup |Z,—y./1|>e|S5%>1,Z,=y//1}=0

L0 4 —or 1-s<s<
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We have
P.{S%'>1]|Z, =y/\/;} S e L

Then it is sufficient to show

lim im P{ sup |Z,—y//t1>e|Z,=y//t}=0

310 1~ l—s<rg)

By making the change of variable Y, =2, _,— y/\/? we have
P sup |Z.—y\11>¢elZ =y /t}

l-dgr<]

= P(,{Tf” A T::Y<5 | Y, :;;—y/\ﬂ}
s T, AT <6 ¥,=:)

This converges to 0 when J |0 because the Brownian bridge has con-
tinuous trajectories. ||
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